2014-09-22 03:22:21 +0000 target 0: orig (ruby 2.2.0dev (2014-09-21 trunk 47675) [x86_64-linux]) at "./gcc/ruby.orig" target 1: stll (ruby 2.2.0dev (2014-09-21 trunk 47675) [x86_64-linux]) at "./gcc/ruby" ----------------------------------------------------------- app_answer def ack(m, n) if m == 0 then n + 1 elsif n == 0 then ack(m - 1, 1) else ack(m - 1, ack(m, n - 1)) end end def the_answer_to_life_the_universe_and_everything (ack(3,7).to_s.split(//).inject(0){|s,x| s+x.to_i}.to_s + "2" ).to_i end answer = the_answer_to_life_the_universe_and_everything orig 0.076907751 orig 0.077013198 orig 0.07227942 orig 0.072291607 stll 0.083154563 stll 0.080763157 stll 0.076732289 stll 0.080598319 ----------------------------------------------------------- app_aobench # AO render benchmark # Original program (C) Syoyo Fujita in Javascript (and other languages) # https://code.google.com/p/aobench/ # Ruby(yarv2llvm) version by Hideki Miura # IMAGE_WIDTH = 256 IMAGE_HEIGHT = 256 NSUBSAMPLES = 2 NAO_SAMPLES = 8 class Vec def initialize(x, y, z) @x = x @y = y @z = z end attr_accessor :x, :y, :z def vadd(b) Vec.new(@x + b.x, @y + b.y, @z + b.z) end def vsub(b) Vec.new(@x - b.x, @y - b.y, @z - b.z) end def vcross(b) Vec.new(@y * b.z - @z * b.y, @z * b.x - @x * b.z, @x * b.y - @y * b.x) end def vdot(b) @x * b.x + @y * b.y + @z * b.z end def vlength Math.sqrt(@x * @x + @y * @y + @z * @z) end def vnormalize len = vlength v = Vec.new(@x, @y, @z) if len > 1.0e-17 then v.x = v.x / len v.y = v.y / len v.z = v.z / len end v end end class Sphere def initialize(center, radius) @center = center @radius = radius end attr_reader :center, :radius def intersect(ray, isect) rs = ray.org.vsub(@center) b = rs.vdot(ray.dir) c = rs.vdot(rs) - (@radius * @radius) d = b * b - c if d > 0.0 then t = - b - Math.sqrt(d) if t > 0.0 and t < isect.t then isect.t = t isect.hit = true isect.pl = Vec.new(ray.org.x + ray.dir.x * t, ray.org.y + ray.dir.y * t, ray.org.z + ray.dir.z * t) n = isect.pl.vsub(@center) isect.n = n.vnormalize else 0.0 end end nil end end class Plane def initialize(p, n) @p = p @n = n end def intersect(ray, isect) d = -@p.vdot(@n) v = ray.dir.vdot(@n) v0 = v if v < 0.0 then v0 = -v end if v0 < 1.0e-17 then return end t = -(ray.org.vdot(@n) + d) / v if t > 0.0 and t < isect.t then isect.hit = true isect.t = t isect.n = @n isect.pl = Vec.new(ray.org.x + t * ray.dir.x, ray.org.y + t * ray.dir.y, ray.org.z + t * ray.dir.z) end nil end end class Ray def initialize(org, dir) @org = org @dir = dir end attr_accessor :org, :dir end class Isect def initialize @t = 10000000.0 @hit = false @pl = Vec.new(0.0, 0.0, 0.0) @n = Vec.new(0.0, 0.0, 0.0) end attr_accessor :t, :hit, :pl, :n end def clamp(f) i = f * 255.5 if i > 255.0 then i = 255.0 end if i < 0.0 then i = 0.0 end i.to_i end def otherBasis(basis, n) basis[2] = Vec.new(n.x, n.y, n.z) basis[1] = Vec.new(0.0, 0.0, 0.0) if n.x < 0.6 and n.x > -0.6 then basis[1].x = 1.0 elsif n.y < 0.6 and n.y > -0.6 then basis[1].y = 1.0 elsif n.z < 0.6 and n.z > -0.6 then basis[1].z = 1.0 else basis[1].x = 1.0 end basis[0] = basis[1].vcross(basis[2]) basis[0] = basis[0].vnormalize basis[1] = basis[2].vcross(basis[0]) basis[1] = basis[1].vnormalize end class Scene def initialize @spheres = Array.new @spheres[0] = Sphere.new(Vec.new(-2.0, 0.0, -3.5), 0.5) @spheres[1] = Sphere.new(Vec.new(-0.5, 0.0, -3.0), 0.5) @spheres[2] = Sphere.new(Vec.new(1.0, 0.0, -2.2), 0.5) @plane = Plane.new(Vec.new(0.0, -0.5, 0.0), Vec.new(0.0, 1.0, 0.0)) end def ambient_occlusion(isect) basis = Array.new otherBasis(basis, isect.n) ntheta = NAO_SAMPLES nphi = NAO_SAMPLES eps = 0.0001 occlusion = 0.0 p0 = Vec.new(isect.pl.x + eps * isect.n.x, isect.pl.y + eps * isect.n.y, isect.pl.z + eps * isect.n.z) nphi.times do |j| ntheta.times do |i| r = rand phi = 2.0 * 3.14159265 * rand x = Math.cos(phi) * Math.sqrt(1.0 - r) y = Math.sin(phi) * Math.sqrt(1.0 - r) z = Math.sqrt(r) rx = x * basis[0].x + y * basis[1].x + z * basis[2].x ry = x * basis[0].y + y * basis[1].y + z * basis[2].y rz = x * basis[0].z + y * basis[1].z + z * basis[2].z raydir = Vec.new(rx, ry, rz) ray = Ray.new(p0, raydir) occisect = Isect.new @spheres[0].intersect(ray, occisect) @spheres[1].intersect(ray, occisect) @spheres[2].intersect(ray, occisect) @plane.intersect(ray, occisect) if occisect.hit then occlusion = occlusion + 1.0 else 0.0 end end end occlusion = (ntheta.to_f * nphi.to_f - occlusion) / (ntheta.to_f * nphi.to_f) Vec.new(occlusion, occlusion, occlusion) end def render(w, h, nsubsamples) cnt = 0 nsf = nsubsamples.to_f h.times do |y| w.times do |x| rad = Vec.new(0.0, 0.0, 0.0) # Subsmpling nsubsamples.times do |v| nsubsamples.times do |u| cnt = cnt + 1 wf = w.to_f hf = h.to_f xf = x.to_f yf = y.to_f uf = u.to_f vf = v.to_f px = (xf + (uf / nsf) - (wf / 2.0)) / (wf / 2.0) py = -(yf + (vf / nsf) - (hf / 2.0)) / (hf / 2.0) eye = Vec.new(px, py, -1.0).vnormalize ray = Ray.new(Vec.new(0.0, 0.0, 0.0), eye) isect = Isect.new @spheres[0].intersect(ray, isect) @spheres[1].intersect(ray, isect) @spheres[2].intersect(ray, isect) @plane.intersect(ray, isect) if isect.hit then col = ambient_occlusion(isect) rad.x = rad.x + col.x rad.y = rad.y + col.y rad.z = rad.z + col.z end end end r = rad.x / (nsf * nsf) g = rad.y / (nsf * nsf) b = rad.z / (nsf * nsf) printf("%c", clamp(r)) printf("%c", clamp(g)) printf("%c", clamp(b)) end nil end nil end end alias printf_orig printf def printf *args end # File.open("ao.ppm", "w") do |fp| printf("P6\n") printf("%d %d\n", IMAGE_WIDTH, IMAGE_HEIGHT) printf("255\n", IMAGE_WIDTH, IMAGE_HEIGHT) Scene.new.render(IMAGE_WIDTH, IMAGE_HEIGHT, NSUBSAMPLES) # end undef printf alias printf printf_orig orig 75.902186682 orig 74.851246616 orig 75.549508001 orig 74.68724678 stll 75.023248847 stll 75.220702096 stll 74.734323101 stll 75.646346842 ----------------------------------------------------------- app_erb # # Create many HTML strings with ERB. # require 'erb' data = DATA.read max = 15_000 title = "hello world!" content = "hello world!\n" * 10 max.times{ ERB.new(data).result(binding) } __END__ <%= title %>

<%= title %>

<%= content %>

orig 1.434876837 orig 1.49000791 orig 1.45129418 orig 1.433509626 stll 1.421816733 stll 1.438997905 stll 1.41859691 stll 1.42112813 ----------------------------------------------------------- app_factorial def fact(n) if(n > 1) n * fact(n-1) else 1 end end 100.times { fact(5000) } orig 1.15202474 orig 1.157359501 orig 1.157395126 orig 1.160035509 stll 1.185296782 stll 1.182300218 stll 1.181661285 stll 1.180009084 ----------------------------------------------------------- app_fib def fib n if n < 3 1 else fib(n-1) + fib(n-2) end end fib(34) orig 0.67618451 orig 0.765469795 orig 0.740107413 orig 0.740275 stll 0.745349644 stll 0.673702968 stll 0.685515467 stll 0.713962127 ----------------------------------------------------------- app_lc_fizzbuzz # # FizzBuzz program using only lambda calculus # # This program is quoted from # "Understanding Computation" by Tom Stuart # http://computationbook.com/ # # You can understand why this program works fine by reading this book. # solution = -> k { -> f { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][k][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> l { -> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[l][f[x]] } }] } }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[m][n]][-> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[f[-> n { -> p { -> x { p[n[p][x]] } } }[m]][n]][m][x] }][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]] } } }][-> p { -> x { p[x] } }][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] } }]][-> n { -> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[x]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> n { -> l { -> x { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][l][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][x]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }] } }[-> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> x { f[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { -> n { -> p { -> x { p[n[p][x]] } } }[f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n]][x] }][-> p { -> x { x } }] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][x] }]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]] } }][n]]]] }] FIRST = -> l { LEFT[RIGHT[l]] } IF = -> b { b } LEFT = -> p { p[-> x { -> y { x } } ] } RIGHT = -> p { p[-> x { -> y { y } } ] } IS_EMPTY = LEFT REST = -> l { RIGHT[RIGHT[l]] } def to_integer(proc) proc[-> n { n + 1 }][0] end def to_boolean(proc) IF[proc][true][false] end def to_array(proc) array = [] until to_boolean(IS_EMPTY[proc]) array.push(FIRST[proc]) proc = REST[proc] end array end def to_char(c) '0123456789BFiuz'.slice(to_integer(c)) end def to_string(s) to_array(s).map { |c| to_char(c) }.join end answer = to_array(solution).map do |p| to_string(p) end answer_ary = answer.to_a # puts answer_ary orig 103.464271245 orig 103.270367428 orig 103.772206631 orig 94.857660936 stll 101.74299117 stll 101.51796827 stll 100.478437786 stll 100.045940035 ----------------------------------------------------------- app_mandelbrot require 'complex' def mandelbrot? z i = 0 while i<100 i += 1 z = z * z return false if z.abs > 2 end true end ary = [] (0..1000).each{|dx| (0..1000).each{|dy| x = dx / 50.0 y = dy / 50.0 c = Complex(x, y) ary << c if mandelbrot?(c) } } orig 1.443175454 orig 1.389118545 orig 1.444175697 orig 1.425667749 stll 1.48311019 stll 1.457191021 stll 1.418584387 stll 1.406271611 ----------------------------------------------------------- app_pentomino #!/usr/local/bin/ruby # This program is contributed by Shin Nishiyama # modified by K.Sasada NP = 5 ROW = 8 + NP COL = 8 $p = [] $b = [] $no = 0 def piece(n, a, nb) nb.each{|x| a[n] = x if n == NP-1 $p << [a.sort] else nbc=nb.dup [-ROW, -1, 1, ROW].each{|d| if x+d > 0 and not a.include?(x+d) and not nbc.include?(x+d) nbc << x+d end } nbc.delete x piece(n+1,a[0..n],nbc) end } end def kikaku(a) a.collect {|x| x - a[0]} end def ud(a) kikaku(a.collect {|x| ((x+NP)%ROW)-ROW*((x+NP)/ROW) }.sort) end def rl(a) kikaku(a.collect {|x| ROW*((x+NP)/ROW)+ROW-((x+NP)%ROW)}.sort) end def xy(a) kikaku(a.collect {|x| ROW*((x+NP)%ROW) + (x+NP)/ROW }.sort) end def mkpieces piece(0,[],[0]) $p.each do |a| a0 = a[0] a[1] = ud(a0) a[2] = rl(a0) a[3] = ud(rl(a0)) a[4] = xy(a0) a[5] = ud(xy(a0)) a[6] = rl(xy(a0)) a[7] = ud(rl(xy(a0))) a.sort! a.uniq! end $p.uniq!.sort! {|x,y| x[0] <=> y[0] } end def mkboard (0...ROW*COL).each{|i| if i % ROW >= ROW-NP $b[i] = -2 else $b[i] = -1 end $b[3*ROW+3]=$b[3*ROW+4]=$b[4*ROW+3]=$b[4*ROW+4]=-2 } end def pboard return # skip print print "No. #$no\n" (0...COL).each{|i| print "|" (0...ROW-NP).each{|j| x = $b[i*ROW+j] if x < 0 print "..|" else printf "%2d|",x+1 end } print "\n" } print "\n" end $pnum=[] def setpiece(a,pos) if a.length == $p.length then $no += 1 pboard return end while $b[pos] != -1 pos += 1 end ($pnum - a).each do |i| $p[i].each do |x| f = 0 x.each{|s| if $b[pos+s] != -1 f=1 break end } if f == 0 then x.each{|s| $b[pos+s] = i } a << i setpiece(a.dup, pos) a.pop x.each{|s| $b[pos+s] = -1 } end end end end mkpieces mkboard $p[4] = [$p[4][0]] $pnum = (0...$p.length).to_a setpiece([],0) __END__ # original NP = 5 ROW = 8 + NP COL = 8 $p = [] $b = [] $no = 0 def piece(n,a,nb) for x in nb a[n] = x if n == NP-1 $p << [a.sort] else nbc=nb.dup for d in [-ROW, -1, 1, ROW] if x+d > 0 and not a.include?(x+d) and not nbc.include?(x+d) nbc << x+d end end nbc.delete x piece(n+1,a[0..n],nbc) end end end def kikaku(a) a.collect {|x| x - a[0]} end def ud(a) kikaku(a.collect {|x| ((x+NP)%ROW)-ROW*((x+NP)/ROW) }.sort) end def rl(a) kikaku(a.collect {|x| ROW*((x+NP)/ROW)+ROW-((x+NP)%ROW)}.sort) end def xy(a) kikaku(a.collect {|x| ROW*((x+NP)%ROW) + (x+NP)/ROW }.sort) end def mkpieces piece(0,[],[0]) $p.each do |a| a0 = a[0] a[1] = ud(a0) a[2] = rl(a0) a[3] = ud(rl(a0)) a[4] = xy(a0) a[5] = ud(xy(a0)) a[6] = rl(xy(a0)) a[7] = ud(rl(xy(a0))) a.sort! a.uniq! end $p.uniq!.sort! {|x,y| x[0] <=> y[0] } end def mkboard for i in 0...ROW*COL if i % ROW >= ROW-NP $b[i] = -2 else $b[i] = -1 end $b[3*ROW+3]=$b[3*ROW+4]=$b[4*ROW+3]=$b[4*ROW+4]=-2 end end def pboard print "No. #$no\n" for i in 0...COL print "|" for j in 0...ROW-NP x = $b[i*ROW+j] if x < 0 print "..|" else printf "%2d|",x+1 end end print "\n" end print "\n" end $pnum=[] def setpiece(a,pos) if a.length == $p.length then $no += 1 pboard return end while $b[pos] != -1 pos += 1 end ($pnum - a).each do |i| $p[i].each do |x| f = 0 for s in x do if $b[pos+s] != -1 f=1 break end end if f == 0 then for s in x do $b[pos+s] = i end a << i setpiece(a.dup, pos) a.pop for s in x do $b[pos+s] = -1 end end end end end mkpieces mkboard $p[4] = [$p[4][0]] $pnum = (0...$p.length).to_a setpiece([],0) orig 19.251731005 orig 19.401931393 orig 19.67451401 orig 19.688054456 stll 20.23520117 stll 20.063695205 stll 20.059589249 stll 19.873132243 ----------------------------------------------------------- app_raise i = 0 while i<300000 i += 1 begin raise rescue end end orig 0.480469084 orig 0.475489086 orig 0.46968977 orig 0.476829611 stll 0.44639243 stll 0.457947486 stll 0.460498637 stll 0.447943672 ----------------------------------------------------------- app_strconcat i = 0 while i<2_000_000 "#{1+1} #{1+1} #{1+1}" i += 1 end orig 1.094424105 orig 1.11210048 orig 1.096381176 orig 1.105250194 stll 1.20048882 stll 1.173947128 stll 1.144473528 stll 1.142194029 ----------------------------------------------------------- app_tak def tak x, y, z unless y < x z else tak( tak(x-1, y, z), tak(y-1, z, x), tak(z-1, x, y)) end end tak(18, 9, 0) orig 0.950311698 orig 0.96376789 orig 0.906241707 orig 0.956854444 stll 0.922821731 stll 0.913758195 stll 0.948953242 stll 0.976013141 ----------------------------------------------------------- app_tarai def tarai( x, y, z ) if x <= y then y else tarai(tarai(x-1, y, z), tarai(y-1, z, x), tarai(z-1, x, y)) end end tarai(12, 6, 0) orig 0.773345721 orig 0.938069558 orig 0.833875203 orig 0.786542059 stll 0.744965718 stll 0.74276532 stll 0.794041302 stll 0.74513676 ----------------------------------------------------------- app_uri require 'uri' 100_000.times{ uri = URI.parse('http://www.ruby-lang.org') uri.scheme uri.host uri.port } orig 1.203150151 orig 1.203281942 orig 1.198934917 orig 1.208436018 stll 1.185644364 stll 1.178961817 stll 1.172326542 stll 1.185490825 ----------------------------------------------------------- hash_aref_miss h = {} strs = ('a'..'z').to_a.map!(&:freeze) strs.each { |s| h[s] = s } strs = ('A'..'Z').to_a 200_000.times { strs.each { |s| h[s] } } orig 0.581844271 orig 0.546509054 orig 0.536046793 orig 0.545414139 stll 0.543187139 stll 0.533808571 stll 0.546964039 stll 0.552212105 ----------------------------------------------------------- hash_aref_str h = {} strs = ('a'..'z').to_a.map!(&:freeze) strs.each { |s| h[s] = s } 200_000.times { strs.each { |s| h[s] } } orig 0.509846267 orig 0.512292507 orig 0.490666466 orig 0.54691563 stll 0.518085693 stll 0.511815183 stll 0.505168083 stll 0.498764936 ----------------------------------------------------------- hash_aref_sym h = {} syms = ('a'..'z').to_a.map(&:to_sym) syms.each { |s| h[s] = s } 200_000.times { syms.each { |s| h[s] } } orig 0.76705316 orig 0.744434871 orig 0.763225548 orig 0.767864076 stll 0.762868988 stll 0.746881789 stll 0.763855334 stll 0.746400672 ----------------------------------------------------------- hash_aref_sym_long h = {} syms = %w[puts warn syswrite write stat bacon lettuce tomato some symbols in this array may already be interned others should not be hash browns make good breakfast but not cooked using prime numbers shift for division entries delete_if keys exist? ].map!(&:to_sym) syms.each { |s| h[s] = s } 200_000.times { syms.each { |s| h[s] } } orig 1.701745811 orig 1.643713538 orig 1.726882511 orig 1.978845257 stll 1.743638066 stll 1.653855425 stll 1.644165249 stll 1.697783329 ----------------------------------------------------------- hash_flatten h = {} 10000.times do |i| h[i] = nil end 1000.times do h.flatten end orig 0.645352609 orig 0.6449411 orig 0.646505333 orig 0.645007624 stll 0.666236447 stll 0.663374636 stll 0.666589671 stll 0.665207124 ----------------------------------------------------------- hash_ident_num h = {}.compare_by_identity nums = (1..26).to_a nums.each { |n| h[n] = n } 200_000.times { nums.each { |n| h[n] } } orig 0.364856333 orig 0.36488123 orig 0.364863791 orig 0.371417837 stll 0.364452518 stll 0.378575145 stll 0.370886268 stll 0.36512445 ----------------------------------------------------------- hash_ident_obj h = {}.compare_by_identity objs = 26.times.map { Object.new } objs.each { |o| h[o] = o } 200_000.times { objs.each { |o| h[o] } } orig 0.360803817 orig 0.432063855 orig 0.382062505 orig 0.366324338 stll 0.361870617 stll 0.363626706 stll 0.368333824 stll 0.43883578 ----------------------------------------------------------- hash_ident_str h = {}.compare_by_identity strs = ('a'..'z').to_a strs.each { |s| h[s] = s } 200_000.times { strs.each { |s| h[s] } } orig 0.362281844 orig 0.360742375 orig 0.355075286 orig 0.36324628 stll 0.360779588 stll 0.364219822 stll 0.362076107 stll 0.370421415 ----------------------------------------------------------- hash_ident_sym h = {}.compare_by_identity syms = ('a'..'z').to_a.map(&:to_sym) syms.each { |s| h[s] = s } 200_000.times { syms.each { |s| h[s] } } orig 0.388840049 orig 0.380898429 orig 0.407232986 orig 0.390274444 stll 0.403747036 stll 0.402616823 stll 0.399846766 stll 0.415051837 ----------------------------------------------------------- hash_keys h = {} 10000.times do |i| h[i] = nil end 5000.times do h.keys end orig 0.268130531 orig 0.27108904 orig 0.268008573 orig 0.269154478 stll 0.276635886 stll 0.283391509 stll 0.274173188 stll 0.277769373 ----------------------------------------------------------- hash_shift h = {} 10000.times do |i| h[i] = nil end 50000.times do k, v = h.shift h[k] = v end orig 0.053778402 orig 0.052811225 orig 0.054010294 orig 0.052227035 stll 0.053281978 stll 0.052982816 stll 0.052351999 stll 0.052580808 ----------------------------------------------------------- hash_values h = {} 10000.times do |i| h[i] = nil end 5000.times do h.values end orig 0.273749347 orig 0.281347434 orig 0.28146315 orig 0.273351304 stll 0.296613909 stll 0.29495196 stll 0.290355612 stll 0.290852103 ----------------------------------------------------------- io_file_create # # Create files # max = 200_000 file = './tmpfile_of_bm_io_file_create' max.times{ f = open(file, 'w') f.close#(true) } File.unlink(file) orig 2.134758291 orig 2.095607975 orig 2.15327683 orig 2.160007494 stll 2.183090732 stll 2.182780637 stll 2.209898984 stll 2.229402006 ----------------------------------------------------------- io_file_read # # Seek and Read file. # require 'tempfile' max = 200_000 str = "Hello world! " * 1000 f = Tempfile.new('yarv-benchmark') f.write str max.times{ f.seek 0 f.read } orig 2.445714064 orig 2.458059566 orig 2.445559108 orig 2.43641231 stll 2.44936718 stll 2.452017852 stll 2.478799263 stll 2.348101607 ----------------------------------------------------------- io_file_write # # Seek and Write file. # require 'tempfile' max = 200_000 str = "Hello world! " * 1000 f = Tempfile.new('yarv-benchmark') max.times{ f.seek 0 f.write str } orig 1.431471318 orig 1.424178264 orig 1.462580745 orig 1.475504414 stll 1.421170675 stll 1.495819616 stll 1.646992442 stll 1.422282203 ----------------------------------------------------------- io_select # IO.select performance w = [ IO.pipe[1] ]; nr = 1000000 nr.times { IO.select nil, w } orig 2.425636121 orig 2.32578062 orig 2.297544557 orig 2.359833491 stll 2.261037159 stll 2.305199541 stll 2.272618874 stll 2.285183916 ----------------------------------------------------------- io_select2 # IO.select performance. worst case of single fd. ios = [] nr = 1000000 if defined?(Process::RLIMIT_NOFILE) max = Process.getrlimit(Process::RLIMIT_NOFILE)[0] else max = 64 end puts "max fd: #{max} (results not apparent with <= 1024 max fd)" ((max / 2) - 10).times do ios.concat IO.pipe end last = [ ios[-1] ] puts "last IO: #{last[0].inspect}" nr.times do IO.select nil, last end orig 2.713317553 orig 2.541444546 orig 2.634754169 orig 2.625326237 stll 2.63995044 stll 2.627945631 stll 2.645913209 stll 2.585330074 ----------------------------------------------------------- io_select3 # IO.select performance. a lot of fd ios = [] nr = 100 if defined?(Process::RLIMIT_NOFILE) max = Process.getrlimit(Process::RLIMIT_NOFILE)[0] else max = 64 end puts "max fd: #{max} (results not apparent with <= 1024 max fd)" (max - 10).times do r, w = IO.pipe r.close ios.push w end nr.times do IO.select nil, ios end orig 0.054925434 orig 0.054877586 orig 0.055196154 orig 0.054918019 stll 0.055158811 stll 0.05532308 stll 0.054977403 stll 0.055042677 ----------------------------------------------------------- loop_for for i in 1..30_000_000 # end orig 1.366962338 orig 1.373377079 orig 1.381998291 orig 1.375048306 stll 1.39127501 stll 1.389280613 stll 1.389755892 stll 1.390476437 ----------------------------------------------------------- loop_generator max = 600000 if defined? Fiber gen = (1..max).each loop do gen.next end else require 'generator' gen = Generator.new((0..max)) while gen.next? gen.next end end orig 1.062630597 orig 1.069297239 orig 1.075849545 orig 1.07433622 stll 1.09059049 stll 1.082194863 stll 1.088150201 stll 1.088164423 ----------------------------------------------------------- loop_times 30_000_000.times{|e|} orig 1.279343743 orig 1.344588819 orig 1.273588743 orig 1.260321237 stll 1.277000888 stll 1.281842016 stll 1.28216467 stll 1.282774841 ----------------------------------------------------------- loop_whileloop i = 0 while i<30_000_000 # benchmark loop 1 i += 1 end orig 0.675087867 orig 0.674012173 orig 0.672320718 orig 0.672879732 stll 0.672782605 stll 0.672517113 stll 0.673582655 stll 0.673585369 ----------------------------------------------------------- loop_whileloop2 i = 0 while i< 6_000_000 # benchmark loop 2 i += 1 end orig 0.160498752 orig 0.158527911 orig 0.159789994 orig 0.157893676 stll 0.157816557 stll 0.157573727 stll 0.157732348 stll 0.157768088 ----------------------------------------------------------- securerandom require "securerandom" 20_0000.times do SecureRandom.random_number(100) end orig 1.030740281 orig 1.029146585 orig 1.033138106 orig 1.029913438 stll 1.050067081 stll 1.0535899 stll 1.108565948 stll 1.030358722 ----------------------------------------------------------- so_ackermann #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: ackermann-ruby.code,v 1.4 2004/11/13 07:40:41 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ def ack(m, n) if m == 0 then n + 1 elsif n == 0 then ack(m - 1, 1) else ack(m - 1, ack(m, n - 1)) end end NUM = 9 ack(3, NUM) orig 0.721224615 orig 0.781134754 orig 0.723783126 orig 0.720306695 stll 0.886839802 stll 0.794175615 stll 0.887749383 stll 0.738235006 ----------------------------------------------------------- so_array #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: ary-ruby.code,v 1.4 2004/11/13 07:41:27 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ # with help from Paul Brannan and Mark Hubbart n = 9000 # Integer(ARGV.shift || 1) x = Array.new(n) y = Array.new(n, 0) n.times{|bi| x[bi] = bi + 1 } (0 .. 999).each do |e| (n-1).step(0,-1) do |bi| y[bi] += x.at(bi) end end # puts "#{y.first} #{y.last}" orig 0.915129872 orig 0.927414357 orig 0.917308085 orig 0.962834872 stll 0.929790284 stll 0.913588917 stll 0.918694931 stll 0.936454919 ----------------------------------------------------------- so_binary_trees # The Computer Language Shootout Benchmarks # http://shootout.alioth.debian.org # # contributed by Jesse Millikan # disable output alias puts_orig puts def puts str # disable puts end def item_check(tree) if tree[0] == nil tree[1] else tree[1] + item_check(tree[0]) - item_check(tree[2]) end end def bottom_up_tree(item, depth) if depth > 0 item_item = 2 * item depth -= 1 [bottom_up_tree(item_item - 1, depth), item, bottom_up_tree(item_item, depth)] else [nil, item, nil] end end max_depth = 16 # ARGV[0].to_i min_depth = 4 max_depth = min_depth + 2 if min_depth + 2 > max_depth stretch_depth = max_depth + 1 stretch_tree = bottom_up_tree(0, stretch_depth) puts "stretch tree of depth #{stretch_depth}\t check: #{item_check(stretch_tree)}" stretch_tree = nil long_lived_tree = bottom_up_tree(0, max_depth) min_depth.step(max_depth + 1, 2) do |depth| iterations = 2**(max_depth - depth + min_depth) check = 0 for i in 1..iterations temp_tree = bottom_up_tree(i, depth) check += item_check(temp_tree) temp_tree = bottom_up_tree(-i, depth) check += item_check(temp_tree) end puts "#{iterations * 2}\t trees of depth #{depth}\t check: #{check}" end puts "long lived tree of depth #{max_depth}\t check: #{item_check(long_lived_tree)}" undef puts alias puts puts_orig orig 7.936847321 orig 7.604690074 orig 7.692932985 orig 8.184674903 stll 7.979442884 stll 7.60537778 stll 7.705734052 stll 7.66956173 ----------------------------------------------------------- so_concatenate #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: strcat-ruby.code,v 1.4 2004/11/13 07:43:28 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ # based on code from Aristarkh A Zagorodnikov and Dat Nguyen STUFF = "hello\n" i = 0 while i<10 i += 1 hello = '' 4_000_000.times do |e| hello << STUFF end end # puts hello.length orig 3.684142696 orig 3.732635995 orig 3.620797665 orig 3.758308905 stll 3.626641804 stll 3.795458206 stll 3.822672552 stll 3.629753878 ----------------------------------------------------------- so_count_words #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: wc-ruby.code,v 1.4 2004/11/13 07:43:32 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ # with help from Paul Brannan input = open(File.join(File.dirname($0), 'wc.input'), 'rb') nl = nw = nc = 0 while true tmp = input.read(4096) or break data = tmp << (input.gets || "") nc += data.length nl += data.count("\n") ((data.strip! || data).tr!("\n", " ") || data).squeeze! nw += data.count(" ") + 1 end # STDERR.puts "#{nl} #{nw} #{nc}" orig 0.306797295 orig 0.306788852 orig 0.307783984 orig 0.308432361 stll 0.290627892 stll 0.289024423 stll 0.290053983 stll 0.290073612 ----------------------------------------------------------- so_exception #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: except-ruby.code,v 1.4 2004/11/13 07:41:33 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ $HI = 0 $LO = 0 NUM = 250000 # Integer(ARGV[0] || 1) class Lo_Exception < Exception def initialize(num) @value = num end end class Hi_Exception < Exception def initialize(num) @value = num end end def some_function(num) begin hi_function(num) rescue print "We shouldn't get here, exception is: #{$!.type}\n" end end def hi_function(num) begin lo_function(num) rescue Hi_Exception $HI = $HI + 1 end end def lo_function(num) begin blowup(num) rescue Lo_Exception $LO = $LO + 1 end end def blowup(num) if num % 2 == 0 raise Lo_Exception.new(num) else raise Hi_Exception.new(num) end end i = 1 max = NUM+1 while i < max i += 1 some_function(i+1) end orig 0.547559211 orig 0.532556633 orig 0.554299847 orig 0.56096941 stll 0.521164028 stll 0.546378724 stll 0.555412606 stll 0.536771882 ----------------------------------------------------------- so_fannkuch # The Computer Language Shootout # http://shootout.alioth.debian.org/ # Contributed by Sokolov Yura # Modified by Ryan Williams def fannkuch(n) maxFlips, m, r, check = 0, n-1, n, 0 count = (1..n).to_a perm = (1..n).to_a while true if check < 30 puts "#{perm}" check += 1 end while r != 1 count[r-1] = r r -= 1 end if perm[0] != 1 and perm[m] != n perml = perm.clone #.dup flips = 0 while (k = perml.first ) != 1 perml = perml.slice!(0, k).reverse + perml flips += 1 end maxFlips = flips if flips > maxFlips end while true if r==n then return maxFlips end perm.insert r,perm.shift break if (count[r] -= 1) > 0 r += 1 end end end def puts *args end N = 9 # (ARGV[0] || 1).to_i puts "Pfannkuchen(#{N}) = #{fannkuch(N)}" orig 1.712659984 orig 1.734113747 orig 1.712282962 orig 1.697549016 stll 1.695626802 stll 1.761445222 stll 1.743994447 stll 1.736724501 ----------------------------------------------------------- so_fasta # The Computer Language Shootout # http://shootout.alioth.debian.org/ # Contributed by Sokolov Yura $last = 42.0 def gen_random (max,im=139968,ia=3877,ic=29573) (max * ($last = ($last * ia + ic) % im)) / im end alu = "GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGG"+ "GAGGCCGAGGCGGGCGGATCACCTGAGGTCAGGAGTTCGAGA"+ "CCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAAT"+ "ACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCA"+ "GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGG"+ "AGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCC"+ "AGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAA" iub = [ ["a", 0.27], ["c", 0.12], ["g", 0.12], ["t", 0.27], ["B", 0.02], ["D", 0.02], ["H", 0.02], ["K", 0.02], ["M", 0.02], ["N", 0.02], ["R", 0.02], ["S", 0.02], ["V", 0.02], ["W", 0.02], ["Y", 0.02], ] homosapiens = [ ["a", 0.3029549426680], ["c", 0.1979883004921], ["g", 0.1975473066391], ["t", 0.3015094502008], ] def make_repeat_fasta(id, desc, src, n) puts ">#{id} #{desc}" v = nil width = 60 l = src.length s = src * ((n / l) + 1) s.slice!(n, l) puts(s.scan(/.{1,#{width}}/).join("\n")) end def make_random_fasta(id, desc, table, n) puts ">#{id} #{desc}" rand, v = nil,nil width = 60 chunk = 1 * width prob = 0.0 table.each{|v| v[1]= (prob += v[1])} for i in 1..(n/width) puts((1..width).collect{ rand = gen_random(1.0) table.find{|v| v[1]>rand}[0] }.join) end if n%width != 0 puts((1..(n%width)).collect{ rand = gen_random(1.0) table.find{|v| v[1]>rand}[0] }.join) end end n = (ARGV[0] or 250_000).to_i make_repeat_fasta('ONE', 'Homo sapiens alu', alu, n*2) make_random_fasta('TWO', 'IUB ambiguity codes', iub, n*3) make_random_fasta('THREE', 'Homo sapiens frequency', homosapiens, n*5) orig 2.220996142 orig 2.195366282 orig 2.225758668 orig 2.247213251 stll 2.30774499 stll 2.262397659 stll 2.30192945 stll 2.251362034 ----------------------------------------------------------- so_k_nucleotide # The Computer Language Shootout # http://shootout.alioth.debian.org # # contributed by jose fco. gonzalez # modified by Sokolov Yura seq = String.new def frecuency( seq,length ) n, table = seq.length - length + 1, Hash.new(0) f, i = nil, nil (0 ... length).each do |f| (f ... n).step(length) do |i| table[seq[i,length]] += 1 end end [n,table] end def sort_by_freq( seq,length ) n,table = frecuency( seq,length ) a, b, v = nil, nil, nil table.sort{|a,b| b[1] <=> a[1]}.each do |v| puts "%s %.3f" % [v[0].upcase,((v[1]*100).to_f/n)] end puts end def find_seq( seq,s ) n,table = frecuency( seq,s.length ) puts "#{table[s].to_s}\t#{s.upcase}" end input = open(File.join(File.dirname($0), 'fasta.output.100000'), 'rb') line = input.gets while line !~ /^>THREE/ line = input.gets while (line !~ /^>/) & line do seq << line.chomp line = input.gets end [1,2].each {|i| sort_by_freq( seq,i ) } %w(ggt ggta ggtatt ggtattttaatt ggtattttaatttatagt).each{|s| find_seq( seq,s) } orig 1.206130551 orig 1.209457104 orig 1.202575613 orig 1.219369224 stll 1.213787826 stll 1.186250007 stll 1.196798649 stll 1.217787076 ----------------------------------------------------------- so_lists #from http://www.bagley.org/~doug/shootout/bench/lists/lists.ruby NUM = 300 SIZE = 10000 def test_lists() # create a list of integers (Li1) from 1 to SIZE li1 = (1..SIZE).to_a # copy the list to li2 (not by individual items) li2 = li1.dup # remove each individual item from left side of li2 and # append to right side of li3 (preserving order) li3 = Array.new while (not li2.empty?) li3.push(li2.shift) end # li2 must now be empty # remove each individual item from right side of li3 and # append to right side of li2 (reversing list) while (not li3.empty?) li2.push(li3.pop) end # li3 must now be empty # reverse li1 in place li1.reverse! # check that first item is now SIZE if li1[0] != SIZE then p "not SIZE" 0 else # compare li1 and li2 for equality if li1 != li2 then return(0) else # return the length of the list li1.length end end end i = 0 while i LIMIT_SQUARED escape = true break end end byte_acc = (byte_acc << 1) | (escape ? 0b0 : 0b1) bit_num += 1 # Code is very similar for these cases, but using separate blocks # ensures we skip the shifting when it's unnecessary, which is most cases. if (bit_num == 8) print byte_acc.chr byte_acc = 0 bit_num = 0 elsif (x == count_size) byte_acc <<= (8 - bit_num) print byte_acc.chr byte_acc = 0 bit_num = 0 end end end orig 3.331520057 orig 3.138906714 orig 3.145445981 orig 3.178185896 stll 3.11822621 stll 3.284308196 stll 3.414422766 stll 3.047206378 ----------------------------------------------------------- so_matrix #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: matrix-ruby.code,v 1.4 2004/11/13 07:42:14 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ n = 60 #Integer(ARGV.shift || 1) size = 40 def mkmatrix(rows, cols) count = 1 mx = Array.new(rows) (0 .. (rows - 1)).each do |bi| row = Array.new(cols, 0) (0 .. (cols - 1)).each do |j| row[j] = count count += 1 end mx[bi] = row end mx end def mmult(rows, cols, m1, m2) m3 = Array.new(rows) (0 .. (rows - 1)).each do |bi| row = Array.new(cols, 0) (0 .. (cols - 1)).each do |j| val = 0 (0 .. (cols - 1)).each do |k| val += m1.at(bi).at(k) * m2.at(k).at(j) end row[j] = val end m3[bi] = row end m3 end m1 = mkmatrix(size, size) m2 = mkmatrix(size, size) mm = Array.new n.times do mm = mmult(size, size, m1, m2) end # puts "#{mm[0][0]} #{mm[2][3]} #{mm[3][2]} #{mm[4][4]}" orig 0.717624591 orig 0.766581248 orig 0.724998614 orig 0.735096023 stll 0.751996118 stll 0.71349269 stll 0.700764735 stll 0.755610602 ----------------------------------------------------------- so_meteor_contest #!/usr/bin/env ruby # # The Computer Language Shootout # http://shootout.alioth.debian.org # contributed by Kevin Barnes (Ruby novice) # PROGRAM: the main body is at the bottom. # 1) read about the problem here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/ # 2) see how I represent a board as a bitmask by reading the blank_board comments # 3) read as your mental paths take you def print *args end # class to represent all information about a particular rotation of a particular piece class Rotation # an array (by location) containing a bit mask for how the piece maps at the given location. # if the rotation is invalid at that location the mask will contain false attr_reader :start_masks # maps a direction to a relative location. these differ depending on whether it is an even or # odd row being mapped from @@rotation_even_adder = { :west => -1, :east => 1, :nw => -7, :ne => -6, :sw => 5, :se => 6 } @@rotation_odd_adder = { :west => -1, :east => 1, :nw => -6, :ne => -5, :sw => 6, :se => 7 } def initialize( directions ) @even_offsets, @odd_offsets = normalize_offsets( get_values( directions )) @even_mask = mask_for_offsets( @even_offsets) @odd_mask = mask_for_offsets( @odd_offsets) @start_masks = Array.new(60) # create the rotational masks by placing the base mask at the location and seeing if # 1) it overlaps the boundaries and 2) it produces a prunable board. if either of these # is true the piece cannot be placed 0.upto(59) do | offset | mask = is_even(offset) ? (@even_mask << offset) : (@odd_mask << offset) if (blank_board & mask == 0 && !prunable(blank_board | mask, 0, true)) then imask = compute_required( mask, offset) @start_masks[offset] = [ mask, imask, imask | mask ] else @start_masks[offset] = false end end end def compute_required( mask, offset ) board = blank_board 0.upto(offset) { | i | board |= 1 << i } board |= mask return 0 if (!prunable(board | mask, offset)) board = flood_fill(board,58) count = 0 imask = 0 0.upto(59) do | i | if (board[i] == 0) then imask |= (1 << i) count += 1 end end (count > 0 && count < 5) ? imask : 0 end def flood_fill( board, location) return board if (board[location] == 1) board |= 1 << location row, col = location.divmod(6) board = flood_fill( board, location - 1) if (col > 0) board = flood_fill( board, location + 1) if (col < 4) if (row % 2 == 0) then board = flood_fill( board, location - 7) if (col > 0 && row > 0) board = flood_fill( board, location - 6) if (row > 0) board = flood_fill( board, location + 6) if (row < 9) board = flood_fill( board, location + 5) if (col > 0 && row < 9) else board = flood_fill( board, location - 5) if (col < 4 && row > 0) board = flood_fill( board, location - 6) if (row > 0) board = flood_fill( board, location + 6) if (row < 9) board = flood_fill( board, location + 7) if (col < 4 && row < 9) end board end # given a location, produces a list of relative locations covered by the piece at this rotation def offsets( location) if is_even( location) then @even_offsets.collect { | value | value + location } else @odd_offsets.collect { | value | value + location } end end # returns a set of offsets relative to the top-left most piece of the rotation (by even or odd rows) # this is hard to explain. imagine we have this partial board: # 0 0 0 0 0 x [positions 0-5] # 0 0 1 1 0 x [positions 6-11] # 0 0 1 0 0 x [positions 12-17] # 0 1 0 0 0 x [positions 18-23] # 0 1 0 0 0 x [positions 24-29] # 0 0 0 0 0 x [positions 30-35] # ... # The top-left of the piece is at position 8, the # board would be passed as a set of positions (values array) containing [8,9,14,19,25] not necessarily in that # sorted order. Since that array starts on an odd row, the offsets for an odd row are: [0,1,6,11,17] obtained # by subtracting 8 from everything. Now imagine the piece shifted up and to the right so it's on an even row: # 0 0 0 1 1 x [positions 0-5] # 0 0 1 0 0 x [positions 6-11] # 0 0 1 0 0 x [positions 12-17] # 0 1 0 0 0 x [positions 18-23] # 0 0 0 0 0 x [positions 24-29] # 0 0 0 0 0 x [positions 30-35] # ... # Now the positions are [3,4,8,14,19] which after subtracting the lowest value (3) gives [0,1,5,11,16] thus, the # offsets for this particular piece are (in even, odd order) [0,1,5,11,16],[0,1,6,11,17] which is what # this function would return def normalize_offsets( values) min = values.min even_min = is_even(min) other_min = even_min ? min + 6 : min + 7 other_values = values.collect do | value | if is_even(value) then value + 6 - other_min else value + 7 - other_min end end values.collect! { | value | value - min } if even_min then [values, other_values] else [other_values, values] end end # produce a bitmask representation of an array of offset locations def mask_for_offsets( offsets ) mask = 0 offsets.each { | value | mask = mask + ( 1 << value ) } mask end # finds a "safe" position that a position as described by a list of directions can be placed # without falling off any edge of the board. the values returned a location to place the first piece # at so it will fit after making the described moves def start_adjust( directions ) south = east = 0; directions.each do | direction | east += 1 if ( direction == :sw || direction == :nw || direction == :west ) south += 1 if ( direction == :nw || direction == :ne ) end south * 6 + east end # given a set of directions places the piece (as defined by a set of directions) on the board at # a location that will not take it off the edge def get_values ( directions ) start = start_adjust(directions) values = [ start ] directions.each do | direction | if (start % 12 >= 6) then start += @@rotation_odd_adder[direction] else start += @@rotation_even_adder[direction] end values += [ start ] end # some moves take you back to an existing location, we'll strip duplicates values.uniq end end # describes a piece and caches information about its rotations to as to be efficient for iteration # ATTRIBUTES: # rotations -- all the rotations of the piece # type -- a numeic "name" of the piece # masks -- an array by location of all legal rotational masks (a n inner array) for that location # placed -- the mask that this piece was last placed at (not a location, but the actual mask used) class Piece attr_reader :rotations, :type, :masks attr_accessor :placed # transform hashes that change one direction into another when you either flip or rotate a set of directions @@flip_converter = { :west => :west, :east => :east, :nw => :sw, :ne => :se, :sw => :nw, :se => :ne } @@rotate_converter = { :west => :nw, :east => :se, :nw => :ne, :ne => :east, :sw => :west, :se => :sw } def initialize( directions, type ) @type = type @rotations = Array.new(); @map = {} generate_rotations( directions ) directions.collect! { | value | @@flip_converter[value] } generate_rotations( directions ) # creates the masks AND a map that returns [location, rotation] for any given mask # this is used when a board is found and we want to draw it, otherwise the map is unused @masks = Array.new(); 0.upto(59) do | i | even = true @masks[i] = @rotations.collect do | rotation | mask = rotation.start_masks[i] @map[mask[0]] = [ i, rotation ] if (mask) mask || nil end @masks[i].compact! end end # rotates a set of directions through all six angles and adds a Rotation to the list for each one def generate_rotations( directions ) 6.times do rotations.push( Rotation.new(directions)) directions.collect! { | value | @@rotate_converter[value] } end end # given a board string, adds this piece to the board at whatever location/rotation # important: the outbound board string is 5 wide, the normal location notation is six wide (padded) def fill_string( board_string) location, rotation = @map[@placed] rotation.offsets(location).each do | offset | row, col = offset.divmod(6) board_string[ row*5 + col, 1 ] = @type.to_s end end end # a blank bit board having this form: # # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 0 0 0 0 0 1 # 1 1 1 1 1 1 # # where left lest significant bit is the top left and the most significant is the lower right # the actual board only consists of the 0 places, the 1 places are blockers to keep things from running # off the edges or bottom def blank_board 0b111111100000100000100000100000100000100000100000100000100000100000 end def full_board 0b111111111111111111111111111111111111111111111111111111111111111111 end # determines if a location (bit position) is in an even row def is_even( location) (location % 12) < 6 end # support function that create three utility maps: # $converter -- for each row an array that maps a five bit row (via array mapping) # to the a a five bit representation of the bits below it # $bit_count -- maps a five bit row (via array mapping) to the number of 1s in the row # @@new_regions -- maps a five bit row (via array mapping) to an array of "region" arrays # a region array has three values the first is a mask of bits in the region, # the second is the count of those bits and the third is identical to the first # examples: # 0b10010 => [ 0b01100, 2, 0b01100 ], [ 0b00001, 1, 0b00001] # 0b01010 => [ 0b10000, 1, 0b10000 ], [ 0b00100, 1, 0b00100 ], [ 0b00001, 1, 0b00001] # 0b10001 => [ 0b01110, 3, 0b01110 ] def create_collector_support odd_map = [0b11, 0b110, 0b1100, 0b11000, 0b10000] even_map = [0b1, 0b11, 0b110, 0b1100, 0b11000] all_odds = Array.new(0b100000) all_evens = Array.new(0b100000) bit_counts = Array.new(0b100000) new_regions = Array.new(0b100000) 0.upto(0b11111) do | i | bit_count = odd = even = 0 0.upto(4) do | bit | if (i[bit] == 1) then bit_count += 1 odd |= odd_map[bit] even |= even_map[bit] end end all_odds[i] = odd all_evens[i] = even bit_counts[i] = bit_count new_regions[i] = create_regions( i) end $converter = [] 10.times { | row | $converter.push((row % 2 == 0) ? all_evens : all_odds) } $bit_counts = bit_counts $regions = new_regions.collect { | set | set.collect { | value | [ value, bit_counts[value], value] } } end # determines if a board is punable, meaning that there is no possibility that it # can be filled up with pieces. A board is prunable if there is a grouping of unfilled spaces # that are not a multiple of five. The following board is an example of a prunable board: # 0 0 1 0 0 # 0 1 0 0 0 # 1 1 0 0 0 # 0 1 0 0 0 # 0 0 0 0 0 # ... # # This board is prunable because the top left corner is only 3 bits in area, no piece will ever fit it # parameters: # board -- an initial bit board (6 bit padded rows, see blank_board for format) # location -- starting location, everything above and to the left is already full # slotting -- set to true only when testing initial pieces, when filling normally # additional assumptions are possible # # Algorithm: # The algorithm starts at the top row (as determined by location) and iterates a row at a time # maintainng counts of active open areas (kept in the collector array) each collector contains # three values at the start of an iteration: # 0: mask of bits that would be adjacent to the collector in this row # 1: the number of bits collected so far # 2: a scratch space starting as zero, but used during the computation to represent # the empty bits in the new row that are adjacent (position 0) # The exact procedure is described in-code def prunable( board, location, slotting = false) collectors = [] # loop across the rows (location / 6).to_i.upto(9) do | row_on | # obtain a set of regions representing the bits of the current row. regions = $regions[(board >> (row_on * 6)) & 0b11111] converter = $converter[row_on] # track the number of collectors at the start of the cycle so that # we don't compute against newly created collectors, only existing collectors initial_collector_count = collectors.length # loop against the regions. For each region of the row # we will see if it connects to one or more existing collectors. # if it connects to 1 collector, the bits from the region are added to the # bits of the collector and the mask is placed in collector[2] # If the region overlaps more than one collector then all the collectors # it overlaps with are merged into the first one (the others are set to nil in the array) # if NO collectors are found then the region is copied as a new collector regions.each do | region | collector_found = nil region_mask = region[2] initial_collector_count.times do | collector_num | collector = collectors[collector_num] if (collector) then collector_mask = collector[0] if (collector_mask & region_mask != 0) then if (collector_found) then collector_found[0] |= collector_mask collector_found[1] += collector[1] collector_found[2] |= collector[2] collectors[collector_num] = nil else collector_found = collector collector[1] += region[1] collector[2] |= region_mask end end end end if (collector_found == nil) then collectors.push(Array.new(region)) end end # check the existing collectors, if any collector overlapped no bits in the region its [2] value will # be zero. The size of any such reaason is tested if it is not a multiple of five true is returned since # the board is prunable. if it is a multiple of five it is removed. # Collector that are still active have a new adjacent value [0] set based n the matched bits # and have [2] cleared out for the next cycle. collectors.length.times do | collector_num | collector = collectors[collector_num] if (collector) then if (collector[2] == 0) then return true if (collector[1] % 5 != 0) collectors[collector_num] = nil else # if a collector matches all bits in the row then we can return unprunable early for the # following reasons: # 1) there can be no more unavailable bits bince we fill from the top left downward # 2) all previous regions have been closed or joined so only this region can fail # 3) this region must be good since there can never be only 1 region that is nuot # a multiple of five # this rule only applies when filling normally, so we ignore the rule if we are "slotting" # in pieces to see what configurations work for them (the only other time this algorithm is used). return false if (collector[2] == 0b11111 && !slotting) collector[0] = converter[collector[2]] collector[2] = 0 end end end # get rid of all the empty converters for the next round collectors.compact! end return false if (collectors.length <= 1) # 1 collector or less and the region is fine collectors.any? { | collector | (collector[1] % 5) != 0 } # more than 1 and we test them all for bad size end # creates a region given a row mask. see prunable for what a "region" is def create_regions( value ) regions = [] cur_region = 0 5.times do | bit | if (value[bit] == 0) then cur_region |= 1 << bit else if (cur_region != 0 ) then regions.push( cur_region) cur_region = 0; end end end regions.push(cur_region) if (cur_region != 0) regions end # find up to the counted number of solutions (or all solutions) and prints the final result def find_all find_top( 1) find_top( 0) print_results end # show the board def print_results print "#{@boards_found} solutions found\n\n" print_full_board( @min_board) print "\n" print_full_board( @max_board) print "\n" end # finds solutions. This special version of the main function is only used for the top level # the reason for it is basically to force a particular ordering on how the rotations are tested for # the first piece. It is called twice, first looking for placements of the odd rotations and then # looking for placements of the even locations. # # WHY? # Since any found solution has an inverse we want to maximize finding solutions that are not already found # as an inverse. The inverse will ALWAYS be 3 one of the piece configurations that is exactly 3 rotations away # (an odd number). Checking even vs odd then produces a higher probability of finding more pieces earlier # in the cycle. We still need to keep checking all the permutations, but our probability of finding one will # diminsh over time. Since we are TOLD how many to search for this lets us exit before checking all pieces # this bennifit is very great when seeking small numbers of solutions and is 0 when looking for more than the # maximum number def find_top( rotation_skip) board = blank_board (@pieces.length-1).times do piece = @pieces.shift piece.masks[0].each do | mask, imask, cmask | if ((rotation_skip += 1) % 2 == 0) then piece.placed = mask find( 1, 1, board | mask) end end @pieces.push(piece) end piece = @pieces.shift @pieces.push(piece) end # the normail find routine, iterates through the available pieces, checks all rotations at the current location # and adds any boards found. depth is acheived via recursion. the overall approach is described # here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/ # parameters: # start_location -- where to start looking for place for the next piece at # placed -- number of pieces placed # board -- current state of the board # # see in-code comments def find( start_location, placed, board) # find the next location to place a piece by looking for an empty bit while board[start_location] == 1 start_location += 1 end @pieces.length.times do piece = @pieces.shift piece.masks[start_location].each do | mask, imask, cmask | if ( board & cmask == imask) then piece.placed = mask if (placed == 9) then add_board else find( start_location + 1, placed + 1, board | mask) end end end @pieces.push(piece) end end # print the board def print_full_board( board_string) 10.times do | row | print " " if (row % 2 == 1) 5.times do | col | print "#{board_string[row*5 + col,1]} " end print "\n" end end # when a board is found we "draw it" into a string and then flip that string, adding both to # the list (hash) of solutions if they are unique. def add_board board_string = "99999999999999999999999999999999999999999999999999" @all_pieces.each { | piece | piece.fill_string( board_string ) } save( board_string) save( board_string.reverse) end # adds a board string to the list (if new) and updates the current best/worst board def save( board_string) if (@all_boards[board_string] == nil) then @min_board = board_string if (board_string < @min_board) @max_board = board_string if (board_string > @max_board) @all_boards.store(board_string,true) @boards_found += 1 # the exit motif is a time saver. Ideally the function should return, but those tests # take noticeable time (performance). if (@boards_found == @stop_count) then print_results exit(0) end end end ## ## MAIN BODY :) ## create_collector_support @pieces = [ Piece.new( [ :nw, :ne, :east, :east ], 2), Piece.new( [ :ne, :se, :east, :ne ], 7), Piece.new( [ :ne, :east, :ne, :nw ], 1), Piece.new( [ :east, :sw, :sw, :se ], 6), Piece.new( [ :east, :ne, :se, :ne ], 5), Piece.new( [ :east, :east, :east, :se ], 0), Piece.new( [ :ne, :nw, :se, :east, :se ], 4), Piece.new( [ :se, :se, :se, :west ], 9), Piece.new( [ :se, :se, :east, :se ], 8), Piece.new( [ :east, :east, :sw, :se ], 3) ]; @all_pieces = Array.new( @pieces) @min_board = "99999999999999999999999999999999999999999999999999" @max_board = "00000000000000000000000000000000000000000000000000" @stop_count = ARGV[0].to_i || 2089 @all_boards = {} @boards_found = 0 find_all ######## DO IT!!! orig 3.543663407 orig 3.733573366 orig 3.535227535 orig 3.556369495 stll 3.690977491 stll 3.678345437 stll 3.713898854 stll 3.894223621 ----------------------------------------------------------- so_nbody # The Computer Language Shootout # http://shootout.alioth.debian.org # # Optimized for Ruby by Jesse Millikan # From version ported by Michael Neumann from the C gcc version, # which was written by Christoph Bauer. SOLAR_MASS = 4 * Math::PI**2 DAYS_PER_YEAR = 365.24 def _puts *args end class Planet attr_accessor :x, :y, :z, :vx, :vy, :vz, :mass def initialize(x, y, z, vx, vy, vz, mass) @x, @y, @z = x, y, z @vx, @vy, @vz = vx * DAYS_PER_YEAR, vy * DAYS_PER_YEAR, vz * DAYS_PER_YEAR @mass = mass * SOLAR_MASS end def move_from_i(bodies, nbodies, dt, i) while i < nbodies b2 = bodies[i] dx = @x - b2.x dy = @y - b2.y dz = @z - b2.z distance = Math.sqrt(dx * dx + dy * dy + dz * dz) mag = dt / (distance * distance * distance) b_mass_mag, b2_mass_mag = @mass * mag, b2.mass * mag @vx -= dx * b2_mass_mag @vy -= dy * b2_mass_mag @vz -= dz * b2_mass_mag b2.vx += dx * b_mass_mag b2.vy += dy * b_mass_mag b2.vz += dz * b_mass_mag i += 1 end @x += dt * @vx @y += dt * @vy @z += dt * @vz end end def energy(bodies) e = 0.0 nbodies = bodies.size for i in 0 ... nbodies b = bodies[i] e += 0.5 * b.mass * (b.vx * b.vx + b.vy * b.vy + b.vz * b.vz) for j in (i + 1) ... nbodies b2 = bodies[j] dx = b.x - b2.x dy = b.y - b2.y dz = b.z - b2.z distance = Math.sqrt(dx * dx + dy * dy + dz * dz) e -= (b.mass * b2.mass) / distance end end e end def offset_momentum(bodies) px, py, pz = 0.0, 0.0, 0.0 for b in bodies m = b.mass px += b.vx * m py += b.vy * m pz += b.vz * m end b = bodies[0] b.vx = - px / SOLAR_MASS b.vy = - py / SOLAR_MASS b.vz = - pz / SOLAR_MASS end BODIES = [ # sun Planet.new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0), # jupiter Planet.new( 4.84143144246472090e+00, -1.16032004402742839e+00, -1.03622044471123109e-01, 1.66007664274403694e-03, 7.69901118419740425e-03, -6.90460016972063023e-05, 9.54791938424326609e-04), # saturn Planet.new( 8.34336671824457987e+00, 4.12479856412430479e+00, -4.03523417114321381e-01, -2.76742510726862411e-03, 4.99852801234917238e-03, 2.30417297573763929e-05, 2.85885980666130812e-04), # uranus Planet.new( 1.28943695621391310e+01, -1.51111514016986312e+01, -2.23307578892655734e-01, 2.96460137564761618e-03, 2.37847173959480950e-03, -2.96589568540237556e-05, 4.36624404335156298e-05), # neptune Planet.new( 1.53796971148509165e+01, -2.59193146099879641e+01, 1.79258772950371181e-01, 2.68067772490389322e-03, 1.62824170038242295e-03, -9.51592254519715870e-05, 5.15138902046611451e-05) ] init = 200_000 # ARGV[0] n = Integer(init) offset_momentum(BODIES) puts "%.9f" % energy(BODIES) nbodies = BODIES.size dt = 0.01 n.times do i = 0 while i < nbodies b = BODIES[i] b.move_from_i(BODIES, nbodies, dt, i + 1) i += 1 end end puts "%.9f" % energy(BODIES) orig 1.919079617 orig 1.975013206 orig 1.901991136 orig 1.92656286 stll 1.866437658 stll 1.88404826 stll 1.932805049 stll 1.828222074 ----------------------------------------------------------- so_nested_loop #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: nestedloop-ruby.code,v 1.4 2004/11/13 07:42:22 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ # from Avi Bryant n = 16 # Integer(ARGV.shift || 1) x = 0 n.times do n.times do n.times do n.times do n.times do n.times do x += 1 end end end end end end # puts x orig 1.179308596 orig 1.171269706 orig 1.181903217 orig 1.172516422 stll 1.172017081 stll 1.177415653 stll 1.165295739 stll 1.156829678 ----------------------------------------------------------- so_nsieve # The Computer Language Shootout # http://shootout.alioth.debian.org/ # # contributed by Glenn Parker, March 2005 # modified by Evan Phoenix, Sept 2006 def sieve(m) flags = Flags.dup[0,m] count = 0 pmax = m - 1 p = 2 while p <= pmax unless flags[p].zero? count += 1 mult = p while mult <= pmax flags[mult] = 0 mult += p end end p += 1 end count end n = 9 # (ARGV[0] || 2).to_i Flags = ("\x1" * ( 2 ** n * 10_000)).unpack("c*") n.downto(n-2) do |exponent| break if exponent < 0 m = (1 << exponent) * 10_000 # m = (2 ** exponent) * 10_000 count = sieve(m) printf "Primes up to %8d %8d\n", m, count end orig 2.390820903 orig 2.318950637 orig 2.437676984 orig 2.304916843 stll 2.369171685 stll 2.298353056 stll 2.300853814 stll 2.307873742 ----------------------------------------------------------- so_nsieve_bits #!/usr/bin/ruby #coding: us-ascii # # The Great Computer Language Shootout # http://shootout.alioth.debian.org/ # # nsieve-bits in Ruby # Contributed by Glenn Parker, March 2005 CharExponent = 3 BitsPerChar = 1 << CharExponent LowMask = BitsPerChar - 1 def sieve(m) items = "\xFF" * ((m / BitsPerChar) + 1) masks = "" BitsPerChar.times do |b| masks << (1 << b).chr end count = 0 pmax = m - 1 2.step(pmax, 1) do |p| if items[p >> CharExponent][p & LowMask] == 1 count += 1 p.step(pmax, p) do |mult| a = mult >> CharExponent b = mult & LowMask items[a] -= masks[b] if items[a][b] != 0 end end end count end n = 9 # (ARGV[0] || 2).to_i n.step(n - 2, -1) do |exponent| break if exponent < 0 m = 2 ** exponent * 10_000 count = sieve(m) printf "Primes up to %8d %8d\n", m, count end orig 2.430013486 orig 2.34695376 orig 2.338682305 orig 2.370034271 stll 2.419427754 stll 2.33736988 stll 2.356754823 stll 2.330920787 ----------------------------------------------------------- so_object #!/usr/bin/ruby # -*- mode: ruby -*- # $Id: objinst-ruby.code,v 1.4 2004/11/13 07:42:25 bfulgham Exp $ # http://www.bagley.org/~doug/shootout/ # with help from Aristarkh Zagorodnikov class Toggle def initialize(start_state) @bool = start_state end def value @bool end def activate @bool = !@bool self end end class NthToggle < Toggle def initialize(start_state, max_counter) super start_state @count_max = max_counter @counter = 0 end def activate @counter += 1 if @counter >= @count_max @bool = !@bool @counter = 0 end self end end n = 1500000 # (ARGV.shift || 1).to_i toggle = Toggle.new 1 5.times do toggle.activate.value ? 'true' : 'false' end n.times do toggle = Toggle.new 1 end ntoggle = NthToggle.new 1, 3 8.times do ntoggle.activate.value ? 'true' : 'false' end n.times do ntoggle = NthToggle.new 1, 3 end orig 0.75087679 orig 0.731661961 orig 0.743867505 orig 0.733707173 stll 0.75958264 stll 0.826043638 stll 0.77749541 stll 0.809356197 ----------------------------------------------------------- so_partial_sums n = 2_500_000 # (ARGV.shift || 1).to_i alt = 1.0 ; s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = 0.0 1.upto(n) do |d| d = d.to_f ; d2 = d * d ; d3 = d2 * d ; ds = Math.sin(d) ; dc = Math.cos(d) s0 += (2.0 / 3.0) ** (d - 1.0) s1 += 1.0 / Math.sqrt(d) s2 += 1.0 / (d * (d + 1.0)) s3 += 1.0 / (d3 * ds * ds) s4 += 1.0 / (d3 * dc * dc) s5 += 1.0 / d s6 += 1.0 / d2 s7 += alt / d s8 += alt / (2.0 * d - 1.0) alt = -alt end if false printf("%.9f\t(2/3)^k\n", s0) printf("%.9f\tk^-0.5\n", s1) printf("%.9f\t1/k(k+1)\n", s2) printf("%.9f\tFlint Hills\n", s3) printf("%.9f\tCookson Hills\n", s4) printf("%.9f\tHarmonic\n", s5) printf("%.9f\tRiemann Zeta\n", s6) printf("%.9f\tAlternating Harmonic\n", s7) printf("%.9f\tGregory\n", s8) end orig 2.818967762 orig 2.760091946 orig 2.832095622 orig 2.836549531 stll 2.796194879 stll 2.724194291 stll 2.76982994 stll 2.788234498 ----------------------------------------------------------- so_pidigits # The Great Computer Language Shootout # http://shootout.alioth.debian.org/ # # contributed by Gabriele Renzi class PiDigitSpigot def initialize() @z = Transformation.new 1,0,0,1 @x = Transformation.new 0,0,0,0 @inverse = Transformation.new 0,0,0,0 end def next! @y = @z.extract(3) if safe? @y @z = produce(@y) @y else @z = consume @x.next!() next!() end end def safe?(digit) digit == @z.extract(4) end def produce(i) @inverse.qrst(10,-10*i,0,1).compose(@z) end def consume(a) @z.compose(a) end end class Transformation attr_reader :q, :r, :s, :t def initialize (q, r, s, t) @q,@r,@s,@t,@k = q,r,s,t,0 end def next!() @q = @k = @k + 1 @r = 4 * @k + 2 @s = 0 @t = 2 * @k + 1 self end def extract(j) (@q * j + @r) / (@s * j + @t) end def compose(a) self.class.new( @q * a.q, @q * a.r + r * a.t, @s * a.q + t * a.s, @s * a.r + t * a.t ) end def qrst *args initialize *args self end end WIDTH = 10 n = 2_500 # Integer(ARGV[0]) j = 0 digits = PiDigitSpigot.new while n > 0 if n >= WIDTH WIDTH.times {print digits.next!} j += WIDTH else n.times {print digits.next!} (WIDTH-n).times {print " "} j += n end puts "\t:"+j.to_s n -= WIDTH end orig 1.230567765 orig 1.221824373 orig 1.222956627 orig 1.220685528 stll 1.246893469 stll 1.24190514 stll 1.238885901 stll 1.24462264 ----------------------------------------------------------- so_random # from http://www.bagley.org/~doug/shootout/bench/random/random.ruby IM = 139968.0 IA = 3877.0 IC = 29573.0 $last = 42.0 def gen_random(max) (max * ($last = ($last * IA + IC) % IM)) / IM end N = 3_000_000 i = 0 while i/ if seq.length != 0 revcomp(seq.join) seq=Array.new end puts $_ else $_.sub(/\n/,'') seq.push $_ end end revcomp(seq.join) orig 1.696207198 orig 1.725599154 orig 1.729958544 orig 1.608485381 stll 1.715306813 stll 1.802446195 stll 1.724082179 stll 1.693569074 ----------------------------------------------------------- so_sieve # from http://www.bagley.org/~doug/shootout/bench/sieve/sieve.ruby num = 500 count = i = j = 0 flags0 = Array.new(8192,1) k = 0 while k < num k += 1 count = 0 flags = flags0.dup i = 2 while i<8192 i += 1 if flags[i] # remove all multiples of prime: i j = i*i while j < 8192 j += i flags[j] = nil end count += 1 end end end count orig 0.649601942 orig 0.647237086 orig 0.649898217 orig 0.632322534 stll 1.016391955 stll 0.646690521 stll 0.642816001 stll 0.640809281 ----------------------------------------------------------- so_spectralnorm # The Computer Language Shootout # http://shootout.alioth.debian.org/ # Contributed by Sokolov Yura def eval_A(i,j) return 1.0/((i+j)*(i+j+1)/2+i+1) end def eval_A_times_u(u) v, i = nil, nil (0..u.length-1).collect { |i| v = 0 for j in 0..u.length-1 v += eval_A(i,j)*u[j] end v } end def eval_At_times_u(u) v, i = nil, nil (0..u.length-1).collect{|i| v = 0 for j in 0..u.length-1 v += eval_A(j,i)*u[j] end v } end def eval_AtA_times_u(u) return eval_At_times_u(eval_A_times_u(u)) end n = 500 # ARGV[0].to_i u=[1]*n for i in 1..10 v=eval_AtA_times_u(u) u=eval_AtA_times_u(v) end vBv=0 vv=0 for i in 0..n-1 vBv += u[i]*v[i] vv += v[i]*v[i] end str = "%0.9f" % (Math.sqrt(vBv/vv)), "\n" # print str orig 2.207502264 orig 2.202641027 orig 2.276101326 orig 2.237936235 stll 2.389646897 stll 2.344170861 stll 2.357154523 stll 2.419804989 ----------------------------------------------------------- vm1_attr_ivar class C attr_reader :a, :b def initialize @a = nil @b = nil end end obj = C.new i = 0 while i<30_000_000 # while loop 1 i += 1 j = obj.a k = obj.b end orig 1.775078652 orig 1.579819854 orig 1.530705695 orig 1.481535689 stll 1.872417115 stll 1.772747061 stll 1.771261114 stll 2.105045066 ----------------------------------------------------------- vm1_attr_ivar_set class C attr_accessor :a, :b def initialize @a = nil @b = nil end end obj = C.new i = 0 while i<30_000_000 # while loop 1 i += 1 obj.a = 1 obj.b = 2 end orig 2.077374229 orig 1.902350241 orig 1.906479749 orig 1.991943802 stll 2.128040149 stll 2.335671474 stll 2.13971549 stll 2.210223923 ----------------------------------------------------------- vm1_block def m yield end i = 0 while i<30_000_000 # while loop 1 i += 1 m{ } end orig 2.589659012 orig 2.6451054 orig 2.610556516 orig 2.590529218 stll 2.730701311 stll 2.836282861 stll 2.681341804 stll 2.97133543 ----------------------------------------------------------- vm1_const Const = 1 i = 0 while i<30_000_000 # while loop 1 i += 1 j = Const k = Const end orig 0.979033342 orig 0.99886792 orig 0.983723071 orig 0.977208136 stll 0.973772943 stll 0.975989696 stll 0.976219213 stll 0.982585859 ----------------------------------------------------------- vm1_ensure i = 0 while i<30_000_000 # benchmark loop 1 i += 1 begin begin ensure end ensure end end orig 0.724165609 orig 0.725880564 orig 0.726263316 orig 0.721066171 stll 0.724588335 stll 0.718942845 stll 0.719585569 stll 0.724203967 ----------------------------------------------------------- vm1_float_simple i = 0.0; f = 0.0 while i<30_000_000 i += 1 f += 0.1; f -= 0.1 f += 0.1; f -= 0.1 f += 0.1; f -= 0.1 end orig 5.629314662 orig 5.741108772 orig 5.647057273 orig 5.72612075 stll 5.884375883 stll 5.848602821 stll 5.850894779 stll 6.285931282 ----------------------------------------------------------- vm1_gc_short_lived i = 0 while i<30_000_000 # while loop 1 a = '' # short-lived String b = '' c = '' d = '' e = '' f = '' i+=1 end orig 11.387241744 orig 11.449450182 orig 11.437250504 orig 11.38393708 stll 11.346053909 stll 11.471590071 stll 11.491034316 stll 11.390719839 ----------------------------------------------------------- vm1_gc_short_with_complex_long def nested_hash h, n if n == 0 '' else 10.times{ h[Object.new] = nested_hash(h, n-1) } end end long_lived = Hash.new nested_hash long_lived, 6 GC.start GC.start i = 0 while i<30_000_000 # while loop 1 a = '' # short-lived String b = '' c = '' d = '' e = '' f = '' i+=1 end orig 14.787493571 orig 14.886457206 orig 14.802902398 orig 15.259122669 stll 14.793393518 stll 14.746802562 stll 14.722488134 stll 14.763965453 ----------------------------------------------------------- vm1_gc_short_with_long long_lived = Array.new(1_000_000){|i| "#{i}"} GC.start GC.start i = 0 while i<30_000_000 # while loop 1 a = '' # short-lived String b = '' c = '' d = '' e = '' f = '' i+=1 end orig 13.402758791 orig 13.405955422 orig 13.32097698 orig 13.816873174 stll 13.57116677 stll 13.200058934 stll 13.286009615 stll 13.695064359 ----------------------------------------------------------- vm1_gc_short_with_symbol # make many symbols 50_000.times{|i| sym = "sym#{i}".to_sym} GC.start GC.start i = 0 while i<30_000_000 # while loop 1 a = '' # short-lived String b = '' c = '' d = '' e = '' f = '' i+=1 end orig 12.328163926 orig 12.356284707 orig 12.430955465 orig 12.370242618 stll 12.320503245 stll 12.241165568 stll 12.302058285 stll 12.222321868 ----------------------------------------------------------- vm1_gc_wb_ary long_lived = [] GC.start GC.start i = 0 short_lived = '' while i<30_000_000 # while loop 1 long_lived[0] = short_lived # write barrier i+=1 end orig 1.406046444 orig 1.417366219 orig 1.405509287 orig 1.409559551 stll 1.422412 stll 1.416276617 stll 1.402210795 stll 1.496833299 ----------------------------------------------------------- vm1_gc_wb_obj class C attr_accessor :foo end long_lived = C.new GC.start GC.start i = 0 short_lived = '' while i<30_000_000 # while loop 1 long_lived.foo = short_lived # write barrier i+=1 end orig 1.366096348 orig 1.41578192 orig 1.499232585 orig 1.568550561 stll 1.376300459 stll 1.372293423 stll 1.543800041 stll 1.410759278 ----------------------------------------------------------- vm1_ivar @a = 1 i = 0 while i<30_000_000 # while loop 1 i += 1 j = @a k = @a end orig 1.068152576 orig 1.053796976 orig 1.215447352 orig 1.738598761 stll 1.074802091 stll 1.069087955 stll 1.079190856 stll 1.065927694 ----------------------------------------------------------- vm1_ivar_set i = 0 while i<30_000_000 # while loop 1 i += 1 @a = 1 @b = 2 end orig 1.34517842 orig 1.242616064 orig 1.287348522 orig 1.257771698 stll 1.6057282 stll 1.295179644 stll 1.251917986 stll 1.215367025 ----------------------------------------------------------- vm1_length a = 'abc' b = [1, 2, 3] i = 0 while i<30_000_000 # while loop 1 i += 1 a.length b.length end orig 1.244333496 orig 1.232861692 orig 1.229999976 orig 1.244822993 stll 1.240622958 stll 1.264426683 stll 1.239737617 stll 1.489636791 ----------------------------------------------------------- vm1_lvar_init def m v unless v # unreachable code v1 = v2 = v3 = v4 = v5 = v6 = v7 = v8 = v9 = v10 = v11 = v12 = v13 = v14 = v15 = v16 = v17 = v18 = v19 = v20 = v21 = v22 = v23 = v24 = v25 = v26 = v27 = v28 = v29 = v30 = v31 = v32 = v33 = v34 = v35 = v36 = v37 = v38 = v39 = v40 = v41 = v42 = v43 = v44 = v45 = v46 = v47 = v48 = v49 = v50 = 1 end end i = 0 while i<30_000_000 # while loop 1 i += 1 m i end orig 2.472464324 orig 2.463646088 orig 2.51092844 orig 2.742684841 stll 2.342171638 stll 2.657316142 stll 2.249454803 stll 2.59637074 ----------------------------------------------------------- vm1_lvar_set i = 0 while i<30_000_000 # while loop 1 i += 1 a = b = c = d = e = f = g = h = j = k = l = m = n = o = p = q = r = 1 end orig 3.00694475 orig 2.997706603 orig 2.991594791 orig 2.998971532 stll 3.036331464 stll 2.978220043 stll 3.018400933 stll 3.030474772 ----------------------------------------------------------- vm1_neq i = 0 obj1 = Object.new obj2 = Object.new while i<30_000_000 # while loop 1 i += 1 obj1 != obj2 end orig 1.278330063 orig 1.275172135 orig 1.276179612 orig 1.280768791 stll 1.304537946 stll 1.282477675 stll 1.292991569 stll 1.279209821 ----------------------------------------------------------- vm1_not i = 0 obj = Object.new while i<30_000_000 # while loop 1 i += 1 !obj end orig 0.993258431 orig 0.965899361 orig 0.975919328 orig 1.093194882 stll 0.957628248 stll 0.974361502 stll 0.956915697 stll 0.965176519 ----------------------------------------------------------- vm1_rescue i = 0 while i<30_000_000 # while loop 1 i += 1 begin rescue end end orig 0.800289085 orig 0.808162824 orig 0.805584182 orig 0.836515233 stll 0.801687096 stll 0.803940488 stll 0.801209423 stll 0.804242191 ----------------------------------------------------------- vm1_simplereturn def m return 1 end i = 0 while i<30_000_000 # while loop 1 i += 1 m end orig 1.675303704 orig 1.619408083 orig 1.635237055 orig 1.622015916 stll 1.639133935 stll 2.012594981 stll 1.638230431 stll 1.647196174 ----------------------------------------------------------- vm1_swap a = 1 b = 2 i = 0 while i<30_000_000 # while loop 1 i += 1 a, b = b, a end orig 0.943385532 orig 0.938691281 orig 0.939803321 orig 0.937453452 stll 0.975001654 stll 0.945522013 stll 0.948593591 stll 0.953076201 ----------------------------------------------------------- vm1_yield def m i = 0 while i<30_000_000 # while loop 1 i += 1 yield end end m{} orig 1.611133672 orig 1.588609406 orig 1.68794778 orig 1.601750159 stll 1.634309351 stll 1.602768224 stll 1.605158428 stll 1.603334551 ----------------------------------------------------------- vm2_array i = 0 while i<6_000_000 # benchmark loop 2 i += 1 a = [1,2,3,4,5,6,7,8,9,10] end orig 1.226697521 orig 1.179180979 orig 1.177852647 orig 1.214860786 stll 1.202707143 stll 1.215395914 stll 1.173621889 stll 1.164187624 ----------------------------------------------------------- vm2_bigarray i = 0 while i<6_000_000 # benchmark loop 2 i += 1 a = [ 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, 1,2,3,4,5,6,7,8,9,10, ] end orig 12.380333982 orig 12.52174333 orig 12.642403183 orig 12.445538314 stll 12.36164584 stll 12.346185926 stll 12.37003176 stll 12.402802689 ----------------------------------------------------------- vm2_bighash i = 0 while i<60_000 # benchmark loop 2 i += 1 a = {0=>0, 1=>1, 2=>2, 3=>3, 4=>4, 5=>5, 6=>6, 7=>7, 8=>8, 9=>9, 10=>10, 11=>11, 12=>12, 13=>13, 14=>14, 15=>15, 16=>16, 17=>17, 18=>18, 19=>19, 20=>20, 21=>21, 22=>22, 23=>23, 24=>24, 25=>25, 26=>26, 27=>27, 28=>28, 29=>29, 30=>30, 31=>31, 32=>32, 33=>33, 34=>34, 35=>35, 36=>36, 37=>37, 38=>38, 39=>39, 40=>40, 41=>41, 42=>42, 43=>43, 44=>44, 45=>45, 46=>46, 47=>47, 48=>48, 49=>49, 50=>50, 51=>51, 52=>52, 53=>53, 54=>54, 55=>55, 56=>56, 57=>57, 58=>58, 59=>59, 60=>60, 61=>61, 62=>62, 63=>63, 64=>64, 65=>65, 66=>66, 67=>67, 68=>68, 69=>69, 70=>70, 71=>71, 72=>72, 73=>73, 74=>74, 75=>75, 76=>76, 77=>77, 78=>78, 79=>79, 80=>80, 81=>81, 82=>82, 83=>83, 84=>84, 85=>85, 86=>86, 87=>87, 88=>88, 89=>89, 90=>90, 91=>91, 92=>92, 93=>93, 94=>94, 95=>95, 96=>96, 97=>97, 98=>98, 99=>99, 100=>100, 101=>101, 102=>102, 103=>103, 104=>104, 105=>105, 106=>106, 107=>107, 108=>108, 109=>109, 110=>110, 111=>111, 112=>112, 113=>113, 114=>114, 115=>115, 116=>116, 117=>117, 118=>118, 119=>119, 120=>120, 121=>121, 122=>122, 123=>123, 124=>124, 125=>125, 126=>126, 127=>127, 128=>128, 129=>129, 130=>130, 131=>131, 132=>132, 133=>133, 134=>134, 135=>135, 136=>136, 137=>137, 138=>138, 139=>139, 140=>140, 141=>141, 142=>142, 143=>143, 144=>144, 145=>145, 146=>146, 147=>147, 148=>148, 149=>149, 150=>150, 151=>151, 152=>152, 153=>153, 154=>154, 155=>155, 156=>156, 157=>157, 158=>158, 159=>159, 160=>160, 161=>161, 162=>162, 163=>163, 164=>164, 165=>165, 166=>166, 167=>167, 168=>168, 169=>169, 170=>170, 171=>171, 172=>172, 173=>173, 174=>174, 175=>175, 176=>176, 177=>177, 178=>178, 179=>179, 180=>180, 181=>181, 182=>182, 183=>183, 184=>184, 185=>185, 186=>186, 187=>187, 188=>188, 189=>189, 190=>190, 191=>191, 192=>192, 193=>193, 194=>194, 195=>195, 196=>196, 197=>197, 198=>198, 199=>199, 200=>200, 201=>201, 202=>202, 203=>203, 204=>204, 205=>205, 206=>206, 207=>207, 208=>208, 209=>209, 210=>210, 211=>211, 212=>212, 213=>213, 214=>214, 215=>215, 216=>216, 217=>217, 218=>218, 219=>219, 220=>220, 221=>221, 222=>222, 223=>223, 224=>224, 225=>225, 226=>226, 227=>227, 228=>228, 229=>229, 230=>230, 231=>231, 232=>232, 233=>233, 234=>234, 235=>235, 236=>236, 237=>237, 238=>238, 239=>239, 240=>240, 241=>241, 242=>242, 243=>243, 244=>244, 245=>245, 246=>246, 247=>247, 248=>248, 249=>249, 250=>250, 251=>251, 252=>252, 253=>253, 254=>254, 255=>255, 256=>256, 257=>257, 258=>258, 259=>259, 260=>260, 261=>261, 262=>262, 263=>263, 264=>264, 265=>265, 266=>266, 267=>267, 268=>268, 269=>269, 270=>270, 271=>271, 272=>272, 273=>273, 274=>274, 275=>275, 276=>276, 277=>277, 278=>278, 279=>279, 280=>280, 281=>281, 282=>282, 283=>283, 284=>284, 285=>285, 286=>286, 287=>287, 288=>288, 289=>289, 290=>290, 291=>291, 292=>292, 293=>293, 294=>294, 295=>295, 296=>296, 297=>297, 298=>298, 299=>299, 300=>300, 301=>301, 302=>302, 303=>303, 304=>304, 305=>305, 306=>306, 307=>307, 308=>308, 309=>309, 310=>310, 311=>311, 312=>312, 313=>313, 314=>314, 315=>315, 316=>316, 317=>317, 318=>318, 319=>319, 320=>320, 321=>321, 322=>322, 323=>323, 324=>324, 325=>325, 326=>326, 327=>327, 328=>328, 329=>329, 330=>330, 331=>331, 332=>332, 333=>333, 334=>334, 335=>335, 336=>336, 337=>337, 338=>338, 339=>339, 340=>340, 341=>341, 342=>342, 343=>343, 344=>344, 345=>345, 346=>346, 347=>347, 348=>348, 349=>349, 350=>350, 351=>351, 352=>352, 353=>353, 354=>354, 355=>355, 356=>356, 357=>357, 358=>358, 359=>359, 360=>360, 361=>361, 362=>362, 363=>363, 364=>364, 365=>365, 366=>366, 367=>367, 368=>368, 369=>369, 370=>370, 371=>371, 372=>372, 373=>373, 374=>374, 375=>375, 376=>376, 377=>377, 378=>378, 379=>379, 380=>380, 381=>381, 382=>382, 383=>383, 384=>384, 385=>385, 386=>386, 387=>387, 388=>388, 389=>389, 390=>390, 391=>391, 392=>392, 393=>393, 394=>394, 395=>395, 396=>396, 397=>397, 398=>398, 399=>399, 400=>400, 401=>401, 402=>402, 403=>403, 404=>404, 405=>405, 406=>406, 407=>407, 408=>408, 409=>409, 410=>410, 411=>411, 412=>412, 413=>413, 414=>414, 415=>415, 416=>416, 417=>417, 418=>418, 419=>419, 420=>420, 421=>421, 422=>422, 423=>423, 424=>424, 425=>425, 426=>426, 427=>427, 428=>428, 429=>429, 430=>430, 431=>431, 432=>432, 433=>433, 434=>434, 435=>435, 436=>436, 437=>437, 438=>438, 439=>439, 440=>440, 441=>441, 442=>442, 443=>443, 444=>444, 445=>445, 446=>446, 447=>447, 448=>448, 449=>449, 450=>450, 451=>451, 452=>452, 453=>453, 454=>454, 455=>455, 456=>456, 457=>457, 458=>458, 459=>459, 460=>460, 461=>461, 462=>462, 463=>463, 464=>464, 465=>465, 466=>466, 467=>467, 468=>468, 469=>469, 470=>470, 471=>471, 472=>472, 473=>473, 474=>474, 475=>475, 476=>476, 477=>477, 478=>478, 479=>479, 480=>480, 481=>481, 482=>482, 483=>483, 484=>484, 485=>485, 486=>486, 487=>487, 488=>488, 489=>489, 490=>490, 491=>491, 492=>492, 493=>493, 494=>494, 495=>495, 496=>496, 497=>497, 498=>498, 499=>499, 500=>500,} end orig 7.465059219 orig 7.260972574 orig 7.286171369 orig 7.310469583 stll 6.052185524 stll 5.991592498 stll 5.971074935 stll 5.997845939 ----------------------------------------------------------- vm2_case i = 0 while i<6_000_000 # while loop 2 case :foo when :bar raise when :baz raise when :boo raise when :foo i += 1 end end orig 0.277600651 orig 0.278038471 orig 0.279056603 orig 0.284597958 stll 0.283819987 stll 0.278865695 stll 0.279759527 stll 0.276873214 ----------------------------------------------------------- vm2_defined_method class Object define_method(:m){} end i = 0 while i<6_000_000 # benchmark loop 2 i += 1 m; m; m; m; m; m; m; m; end orig 3.585640933 orig 3.379664264 orig 3.488568267 orig 3.418836469 stll 3.402414244 stll 3.433780251 stll 3.44576095 stll 3.48502022 ----------------------------------------------------------- vm2_dstr i = 0 x = y = 'z' while i<6_000_000 # benchmark loop 2 i += 1 str = "foo#{x}bar#{y}baz" end orig 1.652314878 orig 1.579767382 orig 1.536838236 orig 1.655820073 stll 1.681092847 stll 1.529961886 stll 1.619768592 stll 1.643651966 ----------------------------------------------------------- vm2_eval i = 0 while i<6_000_000 # benchmark loop 2 i += 1 eval("1") end orig 25.919752397 orig 25.782517895 orig 25.183113627 orig 26.355558834 stll 25.769518377 stll 26.303303155 stll 25.499117118 stll 26.177553538 ----------------------------------------------------------- vm2_method def m nil end i = 0 while i<6_000_000 # benchmark loop 2 i += 1 m; m; m; m; m; m; m; m; end orig 1.778649211 orig 1.770381381 orig 1.739259594 orig 1.701182714 stll 1.795936029 stll 1.70206752 stll 1.759192171 stll 1.73251018 ----------------------------------------------------------- vm2_method_missing class C def method_missing mid end end obj = C.new i = 0 while i<6_000_000 # benchmark loop 2 i += 1 obj.m; obj.m; obj.m; obj.m; obj.m; obj.m; obj.m; obj.m; end orig 2.609567191 orig 2.60194805 orig 2.627848256 orig 2.604460029 stll 2.548304047 stll 2.573837979 stll 2.552335342 stll 2.590872958 ----------------------------------------------------------- vm2_method_with_block def m nil end i = 0 while i<6_000_000 # benchmark loop 2 i += 1 m{}; m{}; m{}; m{}; m{}; m{}; m{}; m{}; end orig 1.936632859 orig 2.542980275 orig 1.979618676 orig 1.90365711 stll 1.892749946 stll 1.898123741 stll 1.897254892 stll 1.902284999 ----------------------------------------------------------- vm2_mutex require 'thread' m = Mutex.new i = 0 while i<6_000_000 # benchmark loop 2 i += 1 m.synchronize{} end orig 1.003781369 orig 0.995430363 orig 1.001585706 orig 1.071552262 stll 1.023859993 stll 1.00169896 stll 1.026425664 stll 1.018819805 ----------------------------------------------------------- vm2_newlambda i = 0 while i<6_000_000 # benchmark loop 2 i += 1 lambda {} end orig 1.325844957 orig 1.300657655 orig 1.297537589 orig 1.405321576 stll 1.309325778 stll 1.302559421 stll 1.298220378 stll 1.296029122 ----------------------------------------------------------- vm2_poly_method class C1 def m 1 end end class C2 def m 2 end end o1 = C1.new o2 = C2.new i = 0 while i<6_000_000 # benchmark loop 2 o = (i % 2 == 0) ? o1 : o2 o.m; o.m; o.m; o.m; o.m; o.m; o.m; o.m i += 1 end orig 2.640128237 orig 2.630340682 orig 2.567352646 orig 2.611677011 stll 2.629144696 stll 2.590301355 stll 2.599809806 stll 2.820350055 ----------------------------------------------------------- vm2_poly_method_ov class C1 def m 1 end end class C2 def m 2 end end o1 = C1.new o2 = C2.new i = 0 while i<6_000_000 # benchmark loop 2 o = (i % 2 == 0) ? o1 : o2 # o.m; o.m; o.m; o.m; o.m; o.m; o.m; o.m i += 1 end orig 0.310731855 orig 0.314922143 orig 0.311150465 orig 0.310672318 stll 0.311063967 stll 0.309093024 stll 0.351778377 stll 0.336502248 ----------------------------------------------------------- vm2_proc def m &b b end pr = m{ a = 1 } i = 0 while i<6_000_000 # benchmark loop 2 i += 1 pr.call end orig 0.630780498 orig 0.686732808 orig 0.631107957 orig 0.682950312 stll 0.641060171 stll 0.698646455 stll 0.62993696 stll 0.669145386 ----------------------------------------------------------- vm2_raise1 def rec n if n > 0 rec n-1 else raise end end i = 0 while i<6_000_000 # benchmark loop 2 i += 1 begin rec 1 rescue # ignore end end orig 10.344146881 orig 9.907978815 orig 10.084688518 orig 9.67053621 stll 9.377805944 stll 9.07012779 stll 8.850264971 stll 9.485995204 ----------------------------------------------------------- vm2_raise2 def rec n if n > 0 rec n-1 else raise end end i = 0 while i<6_000_000 # benchmark loop 2 i += 1 begin rec 10 rescue # ignore end end orig 13.061901849 orig 13.723458654 orig 12.908530198 orig 13.29426896 stll 12.765522042 stll 12.915511764 stll 12.608609229 stll 12.067377779 ----------------------------------------------------------- vm2_regexp i = 0 str = 'xxxhogexxx' while i<6_000_000 # benchmark loop 2 /hoge/ =~ str i += 1 end orig 1.259991923 orig 1.283561912 orig 1.296807032 orig 1.27507412 stll 1.350831484 stll 1.334698876 stll 1.327115085 stll 1.370342798 ----------------------------------------------------------- vm2_send class C def m end end o = C.new i = 0 while i<6_000_000 # benchmark loop 2 i += 1 o.__send__ :m end orig 0.544388075 orig 0.498518313 orig 0.511983247 orig 0.485908981 stll 0.494721633 stll 0.494154272 stll 0.505991295 stll 0.498229087 ----------------------------------------------------------- vm2_super class C def m 1 end end class CC < C def m super() end end obj = CC.new i = 0 while i<6_000_000 # benchmark loop 2 obj.m i += 1 end orig 0.742309778 orig 0.729555009 orig 0.680653083 orig 0.685176987 stll 0.774317381 stll 0.742848815 stll 0.679954327 stll 0.757252895 ----------------------------------------------------------- vm2_unif1 i = 0 def m a, b end while i<6_000_000 # benchmark loop 2 i += 1 m 100, 200 end orig 0.361855235 orig 0.370300925 orig 0.361957351 orig 0.394873757 stll 0.456143254 stll 0.363182821 stll 0.359819565 stll 0.44659946 ----------------------------------------------------------- vm2_zsuper i = 0 class C def m a 1 end end class CC < C def m a super end end obj = CC.new while i<6_000_000 # benchmark loop 2 obj.m 10 i += 1 end orig 0.730325022 orig 0.695459727 orig 0.771653664 orig 0.837115661 stll 0.693574966 stll 0.702686625 stll 0.710604034 stll 0.700957775 ----------------------------------------------------------- vm3_backtrace # get last backtrace begin caller(0, 0) rescue ArgumentError alias caller_orig caller def caller lev, n caller_orig(lev)[0..n] end end def rec n if n < 0 100_000.times{ caller(0, 1) } else rec(n-1) end end rec 50 orig 0.211594748 orig 0.209678425 orig 0.210992738 orig 0.211215164 stll 0.207182325 stll 0.207626287 stll 0.206819453 stll 0.207950652 ----------------------------------------------------------- vm3_clearmethodcache i = 0 while i<200_000 i += 1 Class.new{ def m; end } end orig 0.663581943 orig 0.662047826 orig 0.657657196 orig 0.65392642 stll 0.667393442 stll 0.679981761 stll 0.664628428 stll 0.667538441 ----------------------------------------------------------- vm3_gc #! /usr/bin/ruby 5000.times do 100.times do {"xxxx"=>"yyyy"} end GC.start end orig 3.220093962 orig 3.235072991 orig 3.214961913 orig 3.189613963 stll 3.185519486 stll 3.19379998 stll 3.195525217 stll 3.205797219 ----------------------------------------------------------- vm_thread_alive_check1 5_000.times{ t = Thread.new{} while t.alive? Thread.pass end } orig 0.18582642 orig 0.189405711 orig 0.188663854 orig 0.191189919 stll 0.192142893 stll 0.191889445 stll 0.19744699 stll 0.193921654 ----------------------------------------------------------- vm_thread_close 1000.times { Thread.new { sleep } } i = 0 while i<100_000 # benchmark loop 3 i += 1 IO.pipe.each(&:close) end orig 3.924472855 orig 3.946899805 orig 3.895107858 orig 3.99290821 stll 3.965287101 stll 4.010338792 stll 3.956468068 stll 4.004342765 ----------------------------------------------------------- vm_thread_create_join i = 0 while i<100_000 # benchmark loop 3 i += 1 Thread.new{ }.join end orig 2.817850973 orig 2.853065426 orig 2.785564194 orig 2.846063544 stll 2.864191612 stll 2.769173051 stll 2.612623524 stll 2.820803397 ----------------------------------------------------------- vm_thread_mutex1 # one thread, one mutex (no contention) require 'thread' m = Mutex.new r = 0 max = 2000 lmax = max * max (1..1).map{ Thread.new{ i = 0 while i